
Architecture as Code
Alessio Bucaioni∗, Amleto Di Salle† Ludovico Iovino†, Patrizio Pelliccione†, Franco Raimondi†

∗ Mälardalen University (Sweden), alessio.bucaioni@mdu.se
† Gran Sasso Science Institute (Italy), name.surname@gssi.it

Abstract—After more than thirty-five years of research and
development in software architecture, several fundamental chal-
lenges remain unsolved. First, despite the importance of having
a well-defined architecture description aligned with the system,
inconsistencies and misalignments are still prevalent. Second,
although numerous languages exist to describe architectures,
none have achieved widespread use or recognition as a de facto
standard. Third, while architecture is dynamic and evolving, with
architectural decisions often made by non-architect stakeholders,
there are no universally accepted methodologies to capture
emergent aspects and incorporate them into the architecture.

In this paper, we explore the emerging concept of architecture
as code. Inspired by the success of infrastructure as code, which
enables infrastructure management in a codified, automated,
and repeatable manner, architecture as code aims to bring
similar benefits to software architecture. To the best of our
knowledge, this is the first scientific paper to study this concept
in depth within the context of software architecture, providing
a comprehensive description and analysis of its characteristics.
We also investigate how architecture as code is implemented and
applied in practice.

Index Terms—Architecture as code, inconsistencies, architec-
ture drift, architectural debt

I. INTRODUCTION

Software architecture plays a critical role in the development
of complex systems [43]. This importance extends to agile
practices [2], [6], where it is essential to balance the effort
spent on defining the upfront architecture (planned before
development begins) and accommodating the emerging archi-
tecture (decisions made throughout the development process).
However, empirical studies show that architectural descriptions
and decisions are often not fully considered during develop-
ment, at least not to the desired extent [18], [26], [49]. In
addition, despite the large number of architectural languages
proposed by the community, they are not widely adopted, and
we are still far from having an accepted de facto standard [36].

Inconsistencies between architecture descriptions and im-
plementation have varying levels of criticality and sever-
ity [49]. Inconsistencies related to wording and language
are typically less critical, whereas those involving interface
specifications, rules, constraints, patterns, and guidelines can

This work has been partially funded by (a) the European Union - NextGen-
erationEU under the Italian Ministry of University and Research (MUR)
National Innovation Ecosystem, grant ECS00000041 - VITALITY – CUP:
D13C21000430001, (b) the MUR (Italy) Department of Excellence 2023
- 2027, (c) the European HORIZON-KDT-JU research project MATISSE
“Model-based engineering of Digital Twins for early verification and val-
idation of Industrial Systems”, HORIZON-KDT-JU-2023-2-RIA, Proposal
number: 101140216-2, KDT232RIA 00017, (d) the Swedish Knowledge
Foundation through the MoDEV project (20200234), and (e) the Sweden’s
innovation agency Vinnova through the project iSecure (202301899)

have more severe consequences [49]. These inconsistencies
are often discovered late in the development process [49].
Furthermore, over 70% of non-conformance issues between
architecture descriptions and source code are due to flaws in
the documentation [20]. The problem of inconsistency between
architecture and implementation, as well as the challenge of
achieving better alignment between architecture descriptions
and implementation, has been explored in the context of
architecture decay [34], architecture drift [38], and architecture
erosion [17], [38]. This issue has also been recognized as
an anti-pattern: creating a perfect architecture for the wrong
system [31]. The problem is further complicated by the fact
that architecture is a living entity, incorporating both upfront
and emergent aspects and that some decisions are made in
collaboration with stakeholders who do not hold the title
of architects [45]. Researchers have proposed guidelines for
software architects to improve the consistency and usefulness
of architecture descriptions [49]. Other researchers highlight
the need for mechanisms for increasing architectural awareness
and having more case studies [4]. Another branch of research
related to the problem of architectural inconsistencies concerns
architectural debt: when architectural inconsistencies are not
counteracted and fixed in architectural descriptions, they be-
come architectural debt [32].

Years of research and empirical studies highlight that (i)
regardless of the nature of the system or the development
process, inconsistencies are almost inevitable, (ii) the conse-
quences of inconsistencies can be significant, and (iii) pro-
posed solutions are not one-size-fits-all. The key question
remains unanswered: how can we guarantee consistency be-
tween software architecture descriptions and implementation
and maintain this consistency over time, even during system
evolution? While various theoretical solutions could poten-
tially address consistency, the real challenge lies in finding
practical solutions, technologies, or tools that are effective
in practice—ones that clearly demonstrate a Return on In-
vestment (ROI), require minimal training, and have a limited
impact on organizational processes.

Infrastructure as Code (IaC) aims to automatically provision
and support computing infrastructure, including defining sys-
tem dependencies and provisioning local and remote instances
using code rather than manual processes and settings [40]. IaC
is considered a fundamental pillar for implementing DevOps
practices [40], enabling infrastructure components, such as
operating systems, database connections, and storage, to be
automated and aligned with development needs. When IaC
includes descriptions of aspects like system structure, de-



composition, application components, and their relationships,
it starts to overlap with the software architecture domain,
shifting to Architecture as Code (AaC). Architecture as Code
aims to describe, document, manage, and maintain software
architecture through a human- and machine-readable, version-
controlled code-base integrated with implementation. The con-
cept of AaC appears promising for resolving inconsistencies
and preventing them through a seamless process accessible
to various stakeholders, promoting efficient development. It
also provides a way to treat architecture as a living artifact
during system development, incorporating both upfront and
emergent aspects within the same description. However, AaC
has not been extensively explored in scientific literature or
within the research community. Instead, it is a topic that is
gaining increasing attention in the industrial sector despite the
lack of a clear and widely accepted definition of AaC and its
associated concepts.

In this paper, we aim to clarify the concept of AaC by
providing a precise definition, describing its characteristics,
and identifying the level of architectural expressiveness that
can be formulated in an AaC description. More specifically,
this paper addresses the following research questions:

– RQ1: What is AaC, and what are its main characteristics?
To address this question, we provide a definition of AaC
along with a description of its characteristics and chal-
lenges. We gathered this information through a multivocal
literature review, including scientific papers and grey
literature such as white papers, blogs, and websites.

– RQ2: How is AaC implemented and applied in practice?
Our response to RQ2 is twofold. First, we examine
the supporting tools and technology providers identified
through the multivocal literature review. Second, we
provide an in-depth analysis of how AaC is implemented
in the context of Amazon AWS. As it is better detailed
in the next sections, Amazon AWS was selected for this
analysis because of its comprehensiveness and integrated
ecosystem that aligns well with key AaC characteristics,
such as automation, version control, and integration with
CI/CD practices.

The paper is structured as follows. Section II describes
the research methodology we followed to conduct this study.
Section III addresses RQ1 by describing AaC and its charac-
teristics. Section IV and Section V address RQ2 by discussing
tools, and technologies for AaC, and how it is realized in the
context of Amazon AWS. Section VI reviews related works,
while Section VII discusses the findings of the work and
concludes the paper with final remarks and future research
directions.

II. RESEARCH METHODOLOGY

Our research process employs a combination of comple-
mentary methods, including a systematic literature review
(SLR) [30], a gray literature review [24], and use case anal-
ysis [28]. The SLR helps us identify the current state of the
art based on scientific papers. Given the limited number of
scientific studies available in this field and recognizing that

practitioners also widely discuss the topic in blogs, white
papers, and other non-academic sources, we supplemented
the SLR with a grey literature review to capture the state of
practice. Additionally, we conducted a use case analysis based
on a large international company to gain deeper insights into
practical implementation.

The process we followed consists of three phases: planning,
conducting, and documenting. The main objectives of the
planning phase were to establish the need for this study on
AaC, identify the Research Goal (RG) and Research Questions
(RQs), and define the research protocol for carrying out
the study systematically. A detailed research protocol was
the primary output of this phase. In the conducting phase,
we performed activities outlined in the research protocol,
including search and selection, data extraction form definition,
data extraction, and data analysis. The main objectives of
the analyzing phase were to analyze and document potential
threats to validity and to record the study’s results. To facilitate
independent replication and verification, we provide a com-
plete replication package [1] containing search and selection
data, and the list of primary studies.

A. Research goal and questions
Following the Goal-Question-Metric (GQM) approach [7],

we defined the research goal, which is presented in Table I.

TABLE I
RESEARCH GOAL EXPRESSED USING THE GQM PERSPECTIVES.

Purpose Identify, classify, and evaluate
Issue definitions, founding concepts, supporting tools and chal-

lenges
Object of architecture as code
Viewpoint from the point of view of researchers and practitioners.

We refined the goal in the research questions that are
described in the introduction.

B. Search and selection

Following the steps illustrated in Figure 1, we collected rel-
evant research studies for our investigation. We conducted two
parallel reviews: one focused on peer-reviewed literature and
another on gray literature. Both reviews followed a consistent
process. For simplicity, we refer to included studies from either
source as primary studies, unless otherwise specified. For
the peer-reviewed literature, we selected four major scientific
databases: IEEE Xplore, ACM Digital Library, SCOPUS, and
Web of Science, along with the scholarly search engine Google
Scholar. For the gray literature search, we used Google that
accounts for 92.2% of global web searches.1 We crafted a
search string based on our research goal and questions to
capture as many relevant studies as possible, given that AaC
is a relatively new field. The search string used was:

“Architecture as Code”

1https://gs.statcounter.com/search-engine-market-share



ACM Digital
library

IEEE Xplore

Scopus

Web of
science

0

0

0

0

Automatic
search

Impurity and
duplicates removal

150

Application of
selection criteria Snowballing

Google
Scholar

34 34

25

Google
143

Pe
er

 re
vi

ew
ed

 se
ar

ch

Grey literature search

Fig. 1. Search and selection

The automated search for peer-reviewed literature, limited to
studies from 2019 onward, initially identified 25 potential
studies. The grey literature search yielded 143 relevant en-
tries. Google automatically filtered similar entries to reduce
duplicates and impurities. After further manual filtering, we
removed impurities and duplicates and refined the total set
to 150 potential primary studies. Using selection criteria
suggested by Ali and Petersen [3], we systematically applied
inclusion and exclusion criteria to ensure objective selection
of studies. The criteria used are as follows:

Peer-reviewed literature
Inclusion criteria
I1 Studies focusing on software engineering and architecture
Exclusion criteria
E1 Studies not in English
E2 Studies not peer-reviewed
E3 Studies whose full-text is not available
E4 Studies not focusing on AaC

Grey literature
Inclusion criteria
I1 Websites focusing on software engineering and architecture
Exclusion criteria
E1 Websites referring to repositories only containing code
E2 Websites referring to impure sources such as advertisement or

Pinterest pages
E3 Websites referring to peer-reviewed literature2

E4 Websites not in English
E5 Websites addressing complementary aspects of software architec-

ture and using AaC only as buzzword
E6 Websites older than 2019

To proceed to the next stage, studies had to meet all
inclusion criteria and none of the exclusion criteria. Applying
these criteria resulted in a new set of 1 peer-reviewed study and
33 gray literature sources. We then conducted closed recursive
backward and forward snowballing [48] to mitigate potential
construct validity biases [25], but no additional sources were
identified. The final set of 34 primary studies is listed in the
Primary Studies appendix.

2We kept the peer-reviewed and grey literature selection processes sepa-
rated due to the corresponding guidelines; however, we made sure that any
potentially relevant peer-reviewed entry excluded for the grey literature was
already considered in the peer-reviewed literature selection.

C. Data extraction

To extract and collect data from the primary studies, we
designed a data extraction form, as shown in Table II. The data
extraction form consists of two facets, each corresponding to
a research question. RQ1 includes three categories: definition,
foundational concepts, and challenges. RQ2 focuses on two
categories: tools and providers. For all the categories, we
first collected all the data from the primary studies and then
applied the grounded theory methodology [12]. This method
systematically breaks down data, categorises it, and establishes
connections between categories to identify emerging themes.
This approach enabled us to organize qualitative data in
a structured manner, facilitating a deeper understanding of
foundational concepts, challenges, tools, and providers. For
studies involving videos, we first extracted the entire video
transcript using NotebookLM3, and then performed the data
extraction on the transcript.

Facet Category Description Value
RQ1 Definitions Definitions as identified in the studies String

Foundational
concepts

Foundational concepts as identified in
the studies

String

Challenges Challenges as identified in the studies String
RQ2 Tools Tools as identified in the studies String

Providers Providers as identified in the studies String

TABLE II
DATA EXTRACTION FORM

D. Data analysis and synthesis

We analyzed, and synthesized the extracted data following
the guidelines of Cruzes et al. [16]. In this study, we used
both quantitative and qualitative analyses, combining content
analysis [22] and narrative synthesis [42]. We began by analyz-
ing each primary study individually, classifying key features
based on the parameters in the data extraction form. Then,
we examined the entire set of primary studies to identify and
interpret emerging patterns.

E. Threats to validity

One primary threat to external validity in systematic
reviews is that the selected papers may not fully repre-
sent the state-of-the-art and practice of AaC. To address
this, we conducted a search across five major software
engineering databases and supplemented the automatic
search with recursive backward and forward snowballing,
as well as a gray literature search. While we acknowledge
that the search string construction and inclusion/exclusion
criteria are simple, this was an intentional choice to ensure
inclusivity given the limited number of studies in this field.
Additionally, we restricted our review to English-language
studies, as English is the de facto standard for scientific
work in computer science and software engineering. While
this minimizes language-related validity threats, it does
not entirely eliminate them. Another potential limitation

3https://notebooklm.google.com



is the use of alternative terms for AaC, which may have
constrained the search scope. To mitigate this, we expanded
our discussion to include related works where relevant.

To address internal validity, we followed established guide-
lines for systematic and multi-vocal studies, minimizing po-
tential bias. We used descriptive statistics and cross-analyzed
extraction form categories, performing sanity checks to ensure
data consistency.

Construct validity may be affected by poorly designed
search strings; however, we used a straightforward string
for both peer-reviewed and gray literature searches, requiring
minimal adjustment.

For conclusion validity, we consistently applied and docu-
mented well-defined processes and provided a publicly acces-
sible replication package for reproducibility [1]. All authors
contributed to defining the extraction form and engaged in
data extraction, analysis, and synthesis, utilizing established
taxonomies and values derived from primary studies.

III. WHAT IS AAC, AND WHAT ARE ITS MAIN
CHARACTERISTICS? (RQ1)

In this section, we address the first research question: What
is AaC, and what are its defining characteristics? We begin
by providing a clear definition of AaC, followed by an in-
depth description of its primary characteristics. Subsequently,
we discuss key open challenges. The definition, characteristics,
and challenges were synthesized through an analysis of the 34
primary studies

A. AaC definition and characteristics

From the primary studies, we extracted 11 definitions. Due
to space limitations, we have omitted the full definitions here;
however, they are available in the provided replication pack-
age [1]. Among these definitions, four emphasized the concept
of a “readable and version-controlled codebase” [P1], [P8],
[P12], [P22]. Automation was another key aspect emphasized
by several definitions, each offering a different perspective
on its role [P1], [P8], [P9]. For instance, some definitions
focused on integrating automation with DevOps practices,
stressing that “architectural artifacts should emerge from the
code pipeline and be continuously updated throughout the
programming lifecycle” [P9]. Beyond technical aspects, stake-
holder engagement was identified as a critical factor by three
definitions. These definitions emphasized that for AaC to
provide real value, stakeholders must be willing to adopt and
use it effectively. Hence, extensibility was also a prominent
theme, reflecting the need for adaptability given the complexity
of software architectures [P2], [P4], [P21]. Based on these 11
definitions, we can define AaC as follows:

Definition 1 (Architecture as Code). Architecture as Code
is an approach where software architecture is continuously
defined, managed, and evolved through a machine-readable,
version-controlled code-base. This practice ensures alignment
between design and implementation by directly embedding
prescriptive architectural elements, such as structure, rules,
and constraints, within the code. Leveraging automation and

development practices, AaC supports the continuous evolution
of architecture and the generation of up-to-date architectural
artifacts throughout the software lifecycle. By integrating
familiar tools and emphasizing accessibility, AaC fosters ac-
tive engagement from developers and stakeholders, making
architectural practices both adaptable and collaborative.

Table III summarizes the main characteristics of AaC: (1)
code-centric approach to define and manage architecture, (2)
automation-driven evolution of architecture, and (3) approach-
ability and stakeholder engagement.

Characteristics Aspects

(1) Code-Centric
approach to define and
manage architecture

Diagram as code (modeling)
Alignment between architecture and code
Versioning
Traceability

(2) Automation-driven
evolution of architecture

Automatic generation of architectural dia-
grams, documentations, etc.
Automatic analysis and quality assessment
Integration with development practices

(3) Approachability and
stakeholder engagement

Accessible languages (DSLs)
Structured vocabulary
Ubiquitous language
Software development life cycle models fos-
tering stakeholder engagement
Software development life cycle models
supporting emergent architecture

TABLE III
AAC MAIN CHARACTERISTICS AND FOUNDATIONAL ASPECTS.

Characteristic 1: code-centric approach to define and
manage architecture. This characteristic highlights how AaC
enables defining software architecture directly in code, en-
suring consistent alignment between conceptual design and
implementation [P1]–[P3], [P5], [P8], [P11], [P14], [P15],
[P17]–[P19], [P21], [P24], [P25], [P28], [P29], [P33], [P34].
By using code as the single source of truth for the archi-
tecture [P1], [P8], [P12], [P22], AaC merges design and
development, allowing both to evolve seamlessly and reduc-
ing architectural debt – the misalignment between high-level
design and implementation [50]. This integration is achieved
by modeling architecture through machine-readable diagrams
that support vertical (top-down structure) and horizontal (com-
ponent interaction) traceability [P2]. Prescriptive architectural
elements—such as structure, rules, and constraints—are em-
bedded within diagrams, which are no longer static and
manually-drawn representations. Instead, these diagrams are
machine-readable, enabling them to be queried, transformed,
tracked, and version-controlled alongside other parts of the
software [P19], [P33]. This approach aligns with recent studies
examining the interplay of Model-Driven Engineering (MDE)
and software architecture, particularly in modeling architec-
tures through models and metamodels [9]. The result is a
living architecture that evolves with the software, continu-
ously refining architectural decisions fostering adaptability and
precision. An example is the AaC Modeling Language [P2],
which enables architects to maintain a collection of machine-
and human-readable YAML files. Further examples are the



C4 model that supports this structured approach with layered
diagrams, such as System Context and Container Diagrams,
which clarify static structure and system relationships [P13].

Characteristic 2: automation-driven evolution of archi-
tecture. This characteristic highlights the role of automation
in ensuring that architecture evolves dynamically, supporting
agility and adaptability in architectural practices [P2], [P5]–
[P7], [P9], [P17], [P26], [P33]. Machine-readable diagrams
serve as the foundation of this automation-driven evolution,
integrating seamlessly with development practices such as
CI/CD pipelines and employing Command-line Interface (CLI)
tools for the automatic generation of architectural diagrams,
documentation, analysis, and more. For instance, tools like
C4 Inteflow can start from a C4 model and auto-generate
architecture models (as code) in formats such as C#, YAML, or
JSON [P17]. Additionally, these tools can auto-generate com-
prehensive architecture documentation, incorporating defined
properties and custom attributes from the architecture model to
enhance traceability and provide richer contextual understand-
ing [P17]. Another example is the use of the AaC Modeling
Language for implementing automated quality assurance in
pipelines using diagrams [P2]. Just as automation is crucial
for effective infrastructure management, it is equally vital
for the success of AaC [P6]. Without automated workflows,
AaC risks to become static and quickly outdated. Therefore,
AaC extends beyond traditional Infrastructure as Code (IaC),
incorporating elements of Configuration as Code (CaC) and
integrating with CI/CD and other development practices to
ensure continuous evolution. Automation has been extensively
studied by the research community in recent years, with
contributions focusing on automatic code generation [46],
automating architectural conformance checking through CI
and Model-Driven Engineering (MDE) [10], [39], and more.

Characteristic 3: approachability, extensibility, and
stakeholder engagement Making AaC accessible to all stake-
holders is essential to embed architectural practices naturally
into daily activities, fostering broader participation [P2], [P4],
[P13], [P21], [P30], [P32], [P34]. This can be achieved by
integrating AaC into standard developer workflows, using fa-
miliar tools, promoting adaptability, and ensuring extensibility.
Concepts like “approachability for stakeholders” emphasize
the importance of using accessible languages and tools that
enable contributions from all team members, not just archi-
tects [P2], [P13]. Examples include the use of domain-specific
languages (DSLs) like the AaC Modeling Language, where
tools such as C4InterFlow can generate diagrams from code
written in C#, YAML, and more, effectively engaging devel-
opers, architects, and non-technical stakeholders alike [P13].
Another example is the use of established patterns like Enter-
prise Integration Patterns (EIPs), which provide a structured
vocabulary for describing message and event flow within
distributed systems [P4]. Implementing EIPs establishes a
ubiquitous language that goes beyond specific technologies,
fostering clear communication and collaboration across teams.
The use of DSLs has become a de-facto standard practice,
widely recognized through various initiatives by both the

research community and international industrial consortia [5],
[9]. Traditional architectural practices should be embedded
within Software Development Life-cycles (SDLCs) to promote
stakeholder engagement and support a fully evolutionary,
incremental architectural approach—commonly referred to as
emergent architecture [P30], [P32], [P34]. Agile SDLCs, such
as Scrum, XP, and DevOps, exemplify models that balance
emergent and intentional design, continuously developing and
extending the architectural foundation that supports the devel-
opment of future business value [11], [35].

B. Challenges

Table IV presents the identified challenges, organized into
overarching categories for clarity. The table also maps the
challenges to the AaC characteristics presented in Section III.

Challenge 1: ensuring conformance. This challenge is
two-fold, involving conformance among architectural artifacts
and adherence to regulatory requirements in regulated indus-
tries [P8], [P10], [P19], [P31]. Although these sectors adopt
structured approaches to comply with strict policies [P8],
they often lack mechanisms to verify the implementation
of the agreed-upon design or to monitor divergence over
time. AaC may exacerbate this issue if emergent design is
not balanced with intentional design, or if alignment and
traceability processes are insufficient. Similarly, maintaining
conformance between diagrams and overarching structures,
such as patterns or DSLs, remains challenging. Recently,
several works have been proposed to address conformance in
software architectures [10], [39].

Challenge 2: minimizing drift. Drift occurs when changes
in code, infrastructure, and other components are not ac-
curately reflected in the architecture, causing a divergence
between documented and actual system states [P7], [P8],
[P11]. For example, architecture drift refers to inconsistencies
between the code and documented architecture [P8], [P11],
while infrastructure drift pertains to mismatches between de-
fined configurations and the actual infrastructure state [P7].
Both types of drift often result from manual changes, mis-
configurations, or unauthorized modifications, leading to is-
sues in conformance, operations, and reliability. Drift can be
seen as the flip side of technical debt: while technical debt
often results from intentional choices favoring speed over
structure [50], drift represents the unintentional byproduct of
system evolution.

Challenge 3: ensuring scalability. While AaC practices
are beneficial for smaller, simpler systems, they often strug-
gle to scale effectively for larger, more complex architec-
tures [P5], [P29]. Scalability issues arise as AaC practices
become cumbersome and less efficient with extensive systems,
limiting their applicability. For example, users report that
tools like PlantUML, Mingrammer’s Diagrams, Structurizr,
and Eraser work well for small diagrams but become unwieldy
with increased complexity, leading to messy, hard-to-read
visuals [P5]. Additionally, limited customization options in
these tools further complicate efforts to maintain clarity at
scale [P5].



Categories Challenges Code-Centric approach to de-
fine and manage architecture

Automation-
driven evolution
of architecture

Approachability
and stakeholder
engagement

Conformance and
drift management

(1) Ensuring conformance ✓ ✓
(2) Minimizing drift ✓ ✓

Quality Attributes (3) Ensuring scalability ✓
(4) Ensuring performance ✓

Modeling
complexity

(5) Learning new diagramming language ✓ ✓
(6) Balancing abstraction ✓ ✓

Process

(7) Supporting collaboration ✓ ✓
(8) Balancing upfront and emergent de-
sign

✓ ✓ ✓

(9) Steep learning curve ✓ ✓
(10) Selecting tools ✓ ✓

TABLE IV
CHALLENGES AND THEIR MAPPING WITH CHARACTERISTICS.

Challenge 4: ensuring performance. Performance chal-
lenges similarly reflect the limitations of AaC approaches
when applied to sizable systems, where the complexity and
volume of code required to represent the architecture can
hinder responsiveness and manageability [P22].

Challenge 5: learning a new diagramming language.
Many diagramming languages and modeling tools have a steep
learning curve, which can hinder adoption and limit effective
use within teams [P5], [P7]. Team members often struggle to
select suitable tools or master the necessary languages, leading
to inconsistencies in architectural representations and increas-
ing the on-boarding burden. As models scale and require
more detailed configurations, they often demand specialized
knowledge and complex setups, amplifying these challenges.
This aligns with findings from surveys on architectural lan-
guages, which indicate that steep learning curves frequently
deter practitioners [36].

Challenge 6: balancing abstraction. Another major chal-
lenge in modeling complexity is achieving the right level of
abstraction [P25], [P31]. High-level models that omit essential
details may lack sufficient insight, while overly detailed mod-
els can overwhelm users, hindering a clear understanding of
the system. Tools like PlantUML, Structurizr, and Mermaid
are effective for simpler diagrams but often fall short in
supporting clarity and organization for large, complex systems.
Consequently, these tools can produce cluttered, less readable
diagrams that impede comprehension, especially when models
need to capture extensive architectural details or cross-domain
interactions.

Challenge 7: supporting collaboration. Collaboration is
crucial as AaC involves cross-functional teamwork, and ef-
fective communication is needed to maintain alignment on
architecture goals [P31]. A significant challenge with AaC is
the inherent difficulty of collaborative editing, as it still relies
on tools primarily designed for code management [P31]. While
version control systems like Git are essential for collaborative
coding, they often introduce friction when applied to tasks
beyond coding, such as diagramming and documentation.
Concurrent edits to the same document frequently lead to
merge conflicts that require time-consuming resolution, par-

ticularly with non-technical content, potentially discouraging
team members from collaborative editing.

Challenge 8: balancing upfront and emergent design.
Balancing upfront and emergent design within AaC is chal-
lenging, as it requires flexible planning that accommodates
new insights without locking the system into a rigid structure,
while also allowing for future evolution [P30]. AaC must
enable rapid adaptations for continuous delivery while main-
taining enough intentional structure to avoid chaos. The need
for clear communication and decentralized decision-making
adds complexity, as architects must convey a cohesive vision
that empowers teams to innovate locally without disrupting
the architectural foundation. This balance is crucial in AaC
to prevent inconsistencies and ensure the architecture evolves
smoothly, aligning both immediate and long-term business
goals.

Challenge 9: steep learning curve. One of the primary
challenges in adopting AaC is the steep learning curve [P7],
[P28]. This challenge stems from the variety of tools
and techniques involved, requiring teams to familiarize
themselves with new methodologies and best practices,
which can create significant initial hurdles. For example,
desktop-based modeling tools [P7], while benefiting from
an underlying data model that may be familiar, often
require substantial effort to learn and master.

Challenge 10: selecting tools. Selecting the right tools
and technologies for infrastructure provisioning, configuration
management, and automation is crucial for the success of AaC
initiatives [P7]. Poor tool choices can lead to inefficiencies,
compatibility issues, and maintenance challenges. Conducting
thorough research and evaluating tools based on scalability,
flexibility, community support, and integration capabilities can
support informed decisions. Additionally, considering future
scalability and extensibility needs helps ensure alignment with
long-term goals.

IV. WHICH ARE THE CURRENT SOLUTIONS SUPPORTING
AAC? (RQ2)

This section, along with Section V, addresses the second
research question on how AaC is implemented and applied
in practice. Specifically, this section reviews current solutions



that support AaC, while Section V provides a use case analysis
of AaC implementation within the Amazon AWS ecosystem.
From our analysis of 34 primary studies, we identified over
40 tools and technologies, which we grouped into three
categories: (1) design tools, (2) infrastructure tools, and (3)
CI/CD and automation tools. Due to space constraints, the
complete list of tools is omitted from this section, but is
available in the replication package [1].

Design tools. This category encompasses a range of tech-
nologies for specifying, configuring, modeling, visualizing,
and diagramming software architectures. These tools play a
crucial role in implementing AaC by representing architectural
structures, relationships, and behaviors in a standardized, cod-
ified form. Together, these tools facilitate precise and scalable
architecture documentation and visualization, ensuring that
architectural information is accessible, consistent, and well-
aligned with software development practices. Tools in this cat-
egory include PlantUML, C4, C4 sharp, Structurizr, Graphviz,
Cloudgram, Eraser, Reflections library, Archi, MagicDraw,
Software Architect, LucidChart, ArchiMate, DOT language,
Vis.js, Draw.io, Visio, Mermaid, diagrams Python library, and
C4-PlantUML.

Infrastructure tools. This category includes technologies
for managing, provisioning, and automating infrastructure
in cloud environments. These tools enable organizations to
provide a foundation for defining, automating, and scaling
infrastructure and configurations in a consistent and repeat-
able manner. By allowing infrastructure specifications to be
codified, these tools facilitate and accelerate AaC. Tools in
this category include Terraform, AWS CloudFormation, Azure
Resource Manager, Pulumi, Kubernetes, AWS EKS, Azure
AKS, Google Cloud GKE, AWS CDK, Snapblocks, Ansible,
Chef, Puppet, Terraform, Pulumi, Google Cloud Platform,
AWS Lambda, Azure Functions, Google Cloud Functions,
Amazon EventBridge, and Google Cloud.

CI/CD and automation tools. This category includes
technologies that streamline and automate key aspects of the
software development life-cycle as CI, CD, and configuration
management. These tools facilitate reliable and efficient soft-
ware delivery by ensuring that infrastructure, code, and config-
urations are continuously monitored and aligned with devel-
opment and deployment practices. Additionally, automation
tools include drift detection solutions, which help maintain
configuration consistency and monitor for any deviations from
intended system states. Tools in this category include Jenk-
ins, GitLab CI/CD, CircleCI, Swagger, Python, and Jackson
library.

It is important to emphasize that these tools were mentioned
directly in the primary sources. While these tools contribute
valuable functionality, their scope may be either more general
than AaC or limited to specific characteristics or aspects of
AaC identified in Section III. For example, design tools such as
PlantUML, Structurizr, and C4 primarily support aspects like
diagram as code, alignment between architecture and code, and
accessible languages for representing architecture. However,
these tools do not typically include capabilities for automatic

generation of architectural diagrams or documentation, which
limits their effectiveness in automation-driven evolution. Sim-
ilarly, infrastructure tools such as Terraform, AWS CloudFor-
mation, and Kubernetes focus on the core tasks of managing,
provisioning, and automating infrastructure. These tools enable
versioning and traceability of infrastructure as code, aligning
with a code-centric approach. However, they generally lack
features related to diagram as code or accessible languages,
as their primary aim is infrastructure management rather than
architectural modeling.

In the same way, CI/CD and automation tools like Jenkins
and GitLab CI/CD are instrumental in achieving integration
with development practices and automation-driven evolution,
supporting continuous delivery and deployment processes. Yet,
these tools do not contribute directly to aspects stakeholder
engagement through accessible languages.

Through our analysis of the selected tools, we found that
most support the ‘diagram as code’ aspect, offering ways to
create architectural diagrams. Some tools employ DSLs in a
purely AaC style, focusing solely on code-based models, such
as YAML specifications, without generating diagrams. Not all
DSLs are openly accessible; some tools provide documenta-
tion and explicit grammar definitions, while others do not.
Only a few tools provide analysis of declared architectures,
including syntax and conformance checks with language speci-
fications. Alignment between architecture and code is typically
ensured by construction, and versioning is naturally supported
by the textual nature of these specifications. Integration with
development practices is a feature in relatively few tools,
highlighting an area with room for improvement.

Based on this analysis, we selected tools that support
the highest number of AaC aspects and summarized them
in Table V. Table V lists the selected tools alongside the
foundational AaC aspects identified in Section III, with a tick
indicating each aspect implemented by the tool. Note that two
aspects —software development life cycle models fostering
stakeholder engagement and software development life cycle
models supporting emergent architecture— are not included
in Table V, as they pertain to the process rather than the tool
itself. These aspects depend on how the tool is applied within
the process context. Moreover, it is worth highlighting that
none of the selected tools support the aspect of structured
vocabulary.

Structurizr, defined as a “diagrams as code” tool, allows
the creation of multiple software architecture diagrams from
a single model. It offers a standalone and a web-based DSL
editor allowing you to push and pull workspaces to and from a
reserved cloud service. C4Sharp is a “diagrams as code” .NET
library based on the C4 Model. It works like a superset of C4-
PlantUML for managing C4 Model diagrams as code (C#).
C# allows the creation of diagrams from existing application
code. Cloudgram generates diagrams for cloud architectures
directly in a web-based app, using code in a syntax similar to
the DOT language. Diagrams permits to draw cloud system
architectures in Python and as the other approaches allows
the versioning of the specifications. It supports the definition



Tools
Aspects Structurizr C4Sharp Cloudgram Diagrams Eraser C4Interflow arch-as-code AasC AWS Cloud-

Formation
Diagram as code ✓ ✓ ✓ ✓ ✓ ✓ ✓
Alignment between archi-
tecture and code

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Versioning ✓ ✓ ✓ ✓ ✓
Traceability ✓
Automatic generation of ar-
chitectural diagrams, docu-
mentations, etc.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Automatic analysis and
quality assessment

✓ ✓ ✓

Integration with develop-
ment practices

✓ ✓ ✓ ✓

Accessibile languages
(DSLs)

✓ ✓ ✓ ?

Structured vocabulary
Ubiquitous language JSON,

DSL
C# DOT Python DSL JSON, C,

YAML
YAML JSON,

YAML
JSON,
YAML

TABLE V
TOOLS SUPPORTING AAC

of the major providers including: AWS, Azure, GCP, Alibaba
Cloud and Oracle Cloud. Eraser is a diagram as code tool with
a specific DSL to define architectural diagrams and generates
also visual documentation. It is integrated with CI/CD tools.

C4InterFlow4 is a comprehensive application architecture
framework that allows the expression of Application Architec-
ture as Code (AaC) and Business Processes as Code (BPaC),
generating application and business architecture diagrams in-
tended for documentation. Based on the C4 Model [47],
C4InterFlow supports a DSL in C#, YAML, or JSON and
includes a CLI for generating diagrams and documentation,
potentially publishing them from the AaC specification. It
also enables querying of the AaC specification for patterns
or specific architectural elements.

Architecture-as-Code5 allows defining systems in YAML
code, featuring a modular CLI for AaC model validation and
artifact generation. Although a GUI is planned, other docu-
mentation artifacts can be generated, with the DSL explained
in detail to guide users.

Architecture as Code (AasC)6 supports the Common Ar-
chitecture Language Model (CALM) Specification, providing
a machine- and human-readable format in JSON and YAML
for defining, validating, and visualizing architectures. The
documentation outlines language constructs, though the DSL
is not explicitly available.

AWS CloudFormation7 serves as AWS’s core service for
modeling and managing AWS and third-party resources using
CloudFormation templates. These templates are YAML or
JSON files that define resources and dependencies, which can
be created in Python, Java, or TypeScript, or visually with
AWS Infrastructure Composer8, supporting iterative design of

4https://github.com/SlavaVedernikov/C4InterFlow
5https://arch-as-code.org/
6https://github.com/finos/architecture-as-code
7https://aws.amazon.com/cloudformation/
8https://aws.amazon.com/infrastructure-composer/

applications and their architecture.
It is worth noting that, while most tools cover specific

characteristics or aspects of AaC, established players and cloud
solution providers typically offer integrated suites of tools with
a broader scope, often covering nearly the full spectrum of
AaC aspects. An example of this is AWS CloudFormation as
shown in Table V.

V. AMAZON WEB SERVICES CASE STUDY (RQ2)

This section demonstrates how Amazon’s suite of tools
supports AaC in practice. We chose Amazon for this use
case analysis because of its comprehensive, natively integrated
ecosystem, which aligns closely with key AaC characteristics
such as automation, version control, and integration with
CI/CD practices, as highlighted inTable V. Amazon Web
Services (AWS) is the leading cloud provider, holding a
31% market share in Q3 20249, and operates on a pay-
as-you-go model. Customers pay based on a combination
of (auto-)scaling, hardware, operating system, software, and
networking features, tailored to quality attributes like availabil-
ity, redundancy, and security. AWS offers over 200 services
across computing, storage, databases, machine learning, and
the Internet of Things. One of AWS’s most popular services
is Amazon Elastic Compute Cloud (EC2), which provides a
virtually unlimited cluster of computers. Other key services
include storage and database solutions such as Amazon S3,
Amazon Aurora, and Amazon DynamoDB, which focus on
scalability, availability, security, and performance for storing
objects, relational data, or NoSQL schemas. AWS Lambda
exemplifies AWS’s serverless offerings, allowing developers
to build and deploy applications without managing underlying
infrastructure, using their preferred programming languages.
These services are typically deployed within a Virtual Private
Cloud (VPC), a user-defined virtual network, with access

9https://shorturl.at/FIn3w



Fig. 2. Fleetwise Connector Module

regulated through AWS Identity and Access Management
(IAM).

In the following, we describe how the characteristics iden-
tified in Table III are accomplished using the Amazon Web
Services (AWS) ecosystem, using the Connected mobility
solution on AWS10 as a running example. The Connected
Mobility Solution (CMS) on AWS satisfies customer needs for
fleet management for increased efficiency and reduced vehicle
downtime through preventive maintenance, location tracking,
and improved safety and security. Users can employ various
modular features, manage them from a centralized platform,
and integrate custom modules as needed. CMS is composed of
14 modules. Figure 2 shows one of these modules, namely the
FleetWise Connector module, which concerns the consuming
of data captured by AWS IoT FleetWise campaigns. The
figure is organized in three parts. Part A shows the logical
architecture of the FleetWise Connector module. It is part
of the documentation and it is not modeled using the AWS
infrastructure composer and it is not synchronized in any way
with the modeled physical architecture shown in part B of the
figure. The physical architecture is composed of more than
30 components (called resources in the AWS CloudFormation
YAML file), which implement the logical architecture. A
mapping to the logical architecture is not straightforward as

10https://aws.amazon.com/solutions/implementations/
connected-mobility-solution-on-aws/

shown with the following example. The Amazon Timestream
logical component (see the red circle in Part A) is within one
component of the physical architecture (see the red rectangular
box in Part B). Part C of the figure is an excerpt of the AWS
CloudFormation YAML file describing the Timeseries logical
component. Part C can be visualized and edit in the AWS
infrastructure composer by clicking on the Template button. It
is important to highlight that the physical architecture contains
much more information than the logical architecture, e.g., it
includes infrastructure aspects.

Code-Centric approach to define and manage architec-
ture. As mentioned above, the Diagram as code aspect can
be somehow achieved using the AWS Infrastructure Com-
poser. The logical architecture is not explicitly visible and
the AWS Infrastructure Composer mixes the infrastructure
logic, e.g., the definition of network interfaces, with the
architecture structure, e.g., services with their dependencies.
Alignment between architecture and code is guaranteed by
the AWS Infrastructure Composer, which directly maps to
the CloudFormation template. However, this is limited to the
physical architecture view. Versioning and traceability should
be manually defined and managed.

Automation-driven evolution of architecture. The auto-
matic generation of architectural diagrams aspect is obtained
by construction since, during architecture modeling, the AWS
Infrastructure Composer automatically creates the YAML file.
Moreover, Amazon AWS provides services and architectural



and development best practices for automatic analysis and
quality assessment. In particular, the AWS CloudGuard prod-
uct enables users to specify and check rules on the YAML or
JSON files. In contrast, the Well-Architected tool enables the
review of workloads against current AWS best practices and
guides on enhancing cloud architectures. This tool uses the
AWS Well-Architected Framework based on six pillars: oper-
ational excellence, security, reliability, performance efficiency,
cost optimization, and sustainability.

Approachability and stakeholder engagement. The
CloudFormation templates in YAML (or JSON) are a Domain-
Specific Language (DSL) that provides a human-readable for-
mat and can therefore be considered an accessible language.
The format is also ubiquitous, describing the whole architec-
ture. AWS can offer support for Software development life
cycle models fostering stakeholder engagement in two ways,
with varying degrees of automation. In terms of life cycle
of the architecture and infrastructure, the CloudFormation
templates can be managed in a CI/CD pipeline using standard
techniques for stakeholder engagement through requirements
traceability in an Agile setting: this aspect is, therefore,
partially supported. In terms of the life cycle of software in
the architecture, AWS offers a service called CodePipeline that
can be used to implement a CI/CD pipeline from source code
versioning to deployment to production.

VI. RELATED WORK

To the best of our knowledge, this work is the first scientific
paper to thoroughly examine AaC within the context of soft-
ware architecture, offering a comprehensive description and
analysis of its characteristics. However, some prior works have
used the terminology AaC over the years. For example, Krunic
explored documentation as code within automotive software
and systems engineering, employing the term AaC to refer to
a model-based approach in which architecture is represented
as a model from which source code and integration tests are
generated [33]. A key outcome of this approach is complete
interconnection coverage through generated integration tests.
In his work on DevOps automation, Ganne employed the
term AaC to describe a suite of automation tools integrated
within Azure DevOps [23]. These tools facilitate the definition
and deployment of infrastructure using code, enabling version
control and consistency across environments. In a similar vein,
Pandi et al. used the term AaC to describe IaC specifically
applied to cloud architecture [37].

Although some prior works have used AaC as a synonym for
IaC, this is a misconception, as the two concepts have distinct
scopes and purposes [P7]. IaC focuses on automating the pro-
visioning and management of infrastructure resources—such
as virtual machines, networks, and storage—through code,
eliminating the need for manual configuration [41]. In recent
years, IaC has increasingly centered on cloud infrastructure,
owing to its widespread adoption. AaC, however, goes further
by encapsulating the logical design and behavior of entire
software systems as code. It aims to codify architectural deci-

sions, patterns, component relationships, and quality attribute
requirements.

A concept closely related to AaC, researched in re-
cent years, is agile architecture [8]. Agile architecture
encompasses values, practices, and collaborations that
support the continuous evolution of a system’s architecture
in alignment with Agile principles, emphasizing flexibil-
ity, adaptability, and a balance between intentional and
emergent design. It also includes the concept of just-
in-time architecture, which involves providing the right
architectural knowledge at the right time [19]. While
distinct, agile architecture and AaC share foundational
principles such as flexibility, adaptability, and balanced
design. Similarly, AaC aligns with the just-in-time architec-
ture principle by abstracting and delivering architectural
knowledge as needed. However, AaC goes further by
offering a holistic approach to represent architectural
decisions and configurations as code, leveraging version
control, automation, and collaborative practices drawn
from software development.

VII. FINAL DISCUSSION AND FUTURE WORK

In this paper, we explored the concept of AaC and its
benefits, particularly in enhancing consistency between archi-
tectural descriptions and implementation, as well as maintain-
ing this consistency over time, even as the system evolves.
However, several questions remain open and warrant further
research and exploration in the future.

To start with, it is widely recognized in the software ar-
chitecture community that architectures are described through
various views and viewpoints, each addressing different stake-
holder concerns [27]. This raises the question: Which views
and viewpoints can be effectively represented using an AaC
approach? A related question is: To what extent can archi-
tectures be represented as code? Given the characteristics of
AaC, it seems more practical to represent the prescriptive
aspects architecture as code [18], [26]. Prescriptive models,
which are used to prescribe a subject (e.g., develop a system),
are typically of greater interest to developers [26]. In contrast,
descriptive aspects —often used for documentation— could
likely be automatically generated as needed.

In addition, as stated in [51]: Do architectural design
decisions of an (envisioned) system satisfy the stakeholders’
concerns and satisfy the business goals? This question is
multifaceted. Architectural design decisions are recognized
as a core responsibility of software architects [31], yet are
perceived as challenging to make [21]. AaC does not currently
provide tools to support decision-making, and we found no
mature instruments in existing AaC tools for documenting
the rationale behind decisions. It may be easier in AaC to
represent the effect of a decision rather than the decision
itself, but documenting rationale remains crucial. Future work
could draw on literature related to architectural decisions and
the IEEE/ISO/IEC 42010 standard [27], which underscores
the importance of documenting decision rationale and offers
recommendations on which architectural decisions should be



recorded and what properties should be included in the deci-
sion log. Alignment with business goals is widely recognized
as critical [11], [13]–[15] for achieving financial objectives,
managing market position, ensuring product quality and rep-
utation, and fulfilling responsibilities to society, countries,
shareholders, and other stakeholders. However, alignment with
business goals in the context of AaC remains an under-
explored area.

Finally, as stated in [27], [51]: Is the architecture description
complete? This question highlights the importance of covering
all essential aspects in line with stakeholder concerns. We did
not find ready-to-use solutions for this in the available tools.
However, it should be feasible to automatically extract views
from AaC artifacts and code, which could then support a semi-
automated analysis of ’completeness’ based on metrics [44] or
scenario-based methods [29], [51] in relation to stakeholder
concerns.

In conclusion, advancing our understanding of AaC requires
focused study and empirical investigation, particularly in areas
such as decision-making support, alignment with business
goals, completeness of architectural descriptions, and the
effective representation of stakeholder concerns. Addressing
these gaps will be crucial to realizing the full potential of
AaC in modern software architecture.



PRIMARY STUDIES

[P1] Finos, Architecture as Code https://devops.finos.org/docs/
working-groups/aasc/, (2024).

[P2] AaC, Architecture-as-Code (AaC) https://arch-as-code.org, (2024).
[P3] Milan Milanović, Software Architecture As Code

Tools https://medium.com/@techworldwithmilan/
software-architecture-as-code-tools-331a11222da0, (2023).

[P4] Christian Bonzelet, FOLLOWING THE PATH OF
ARCHITECTURE-AS-CODE https://cremich.cloud/
following-the-path-of-architecture-as-code, (2024).

[P5] Architecture as Code. What’s the Point? https://www.reddit.com/r/
softwarearchitecture/comments/1g4s81c/architecture as code whats
the point/?rdt=64228, (2024).

[P6] Gregor Hohpe, Application Architecture as Code https:
//architectelevator.com/cloud/iac-architecture-as-code/, (2023).

[P7] Dhanraj Mekala, Driving innovation with architecture as code: A
game-changer in software development https://www.enlume.com/blogs/
driving-innovation-with-architecture-as-code/, (2024).

[P8] Matthew Bain, Architecture as Code https://www.accidental-architect.
com/architecture-as-code, (2023).

[P9] Zaidul Alam, Revolutionizing Development with Solution
Architecture as Code (SAoC) https://www.linkedin.com/pulse/
revolutionizing-development-solution-architecture-code-zaidul-alam/,
(2023).

[P10] Slava Vedernikov, My journey to C4InterFlow — Open-Source
Architecture as Code Framework https://www.linkedin.com/pulse/
my-journey-c4interflow-open-source-architecture-code-slava-vedernikov-9fbne/,
(2024).

[P11] Software architecture as code https://nljug.org/java-magazine/
software-architecture-as-code/.

[P12] Sophia Parafina, Architecture as Code https://www.pulumi.com/blog/
architecture-as-code-intro/, (2020).

[P13] C4InterFlow - Architecture as Code Samples https://c4interflow.github.
io/architecture-as-code-samples-visualiser/.

[P14] Fasih Khatib, Software Architecture as Code https://fasihkhatib.com/
2023/12/11/Software-Architecture-as-Code/.

[P15] Architectural programming https://zuehlke.github.io/
machines-code-people/articles/aprg.html.

[P16] Ard, Treat architecture as code? https://craftsmen.nl/
treat-architecture-as-code/, (-).

[P17] https://www.c4interflow.com.
[P18] Simon Brown, Software Architecture as Code https://dzone.com/

articles/software-architecture-code, (2024).
[P19] mydeveloperplanet, Software Architecture as Code

With Structurizr https://mydeveloperplanet.com/2024/03/20/
software-architecture-as-code-with-structurizr/, (2024).

[P20] Architectures https://justinoconnor.codes/architectures/.
[P21] Christian Eder, Architecture Modelling & Di-

agramming As Code https://blog.devgenius.io/
architecture-modelling-diagramming-as-code-3636b42fdd17, (2022).

[P22] Ruslan Korniichuk, Architecture as Code (AaC) with Python https:
//www.youtube.com/watch?v=-UgumFMUs5M.

[P23] Architecture as a Service - AaaS https://www.snapblocs.com/
architecture-as-a-service.

[P24] riduidel, Architecture as code is not an easy task https://riduidel.
wordpress.com/2021/09/24/6461/.

[P25] Brian McKenna, Architecture diagrams should be code https://
brianmckenna.org/blog/architecture code, (2023).

[P26] Automatically evaluating application architecture through architecture-
as-code https://patents.google.com/patent/US11526775B2/en, (2021).

[P27] Sophia Parafina, Architecture as Code: Kubernetes https://www.pulumi.
com/blog/architecture-as-code-kubernetes/, (2020).

[P28] Josh Kaplan, Agile Architecture in Practice https://jdkaplan.com/
articles/agile-architecture-in-practice, (2023).

[P29] Klaus Lehner, Architecture as Code using C4 + PlantUML https:
//engineering.cloudflight.io/architecture-as-code-using-c4-plantuml,
(2022).

[P30] Agile architecture https://scaledagileframework.com/
agile-architecture/.

[P31] Open Security Summit, Lessons Learned From Trying to Cre-
ate Architecture Diagrams As Code https://www.youtube.com/watch?v=
DmwPPJcVYa4, (2022).

[P32] GOTO Conferences, Coevolution of Architecture & Code - Closing
The Gap • Dave Thomas • YOW! 2022 https://www.youtube.com/watch?
v=slGZMTFPElo, (2023).

[P33] Ruslan Korniichuk, Architecture as Code (AaC) with Python or
way to become your own boss https://www.youtube.com/watch?v=
CWuVaB13nRs, (2023).

[P34] Gaie et al., An architecture as a code framework to manage documen-
tation of IT projects, Applied Computing and Informatics ahead-of-prin,
(2021).

REFERENCES

[1] “Replication package,” 2025. [Online]. Available: https://doi.org/10.
5281/zenodo.14135535

[2] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and architecture:
Can they coexist?” IEEE Software, vol. 27, no. 2, pp. 16–22, 2010.

[3] N. B. Ali and K. Petersen, “Evaluating strategies for study selection in
systematic literature studies,” in Procs of ESEM, 2014.

[4] N. Ali, S. Baker, R. O’crowley, S. Herold, and J. Buckley, “Architecture
consistency: State of the practice, challenges and requirements,”
Empirical Softw. Engg., vol. 23, no. 1, p. 224–258, Feb. 2018. [Online].
Available: https://doi.org/10.1007/s10664-017-9515-3

[5] E.-A. Association, “About east-adl association,” 2024. [Online].
Available: http://east-adl.info

[6] M. A. Babar, “An exploratory study of architectural practices and chal-
lenges in using agile software development approaches,” in 2009 Joint
Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture, 2009, pp. 81–90.

[7] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Software Engineering. Wiley,
1994, vol. 2, pp. 528–532.

[8] S. Bellomo, I. Gorton, and R. Kazman, “Toward agile architecture:
Insights from 15 years of atam data,” IEEE Software, vol. 32, no. 5,
pp. 38–45, 2015.

[9] A. Bucaioni, A. Di Salle, L. Iovino, I. Malavolta, and P. Pelliccione,
“Reference architectures modelling and compliance checking,” Software
and Systems Modeling, pp. 1–27, 2022.

[10] A. Bucaioni, A. Di Salle, L. Iovino, L. Mariani, and P. Pelliccione,
“Continuous conformance of software architectures,” in 2024 IEEE 21st
International Conference on Software Architecture (ICSA). IEEE, 2024,
pp. 112–122.

[11] A. Bucaioni, P. Pelliccione, and R. Wohlrab, “Aligning architecture with
business goals in the automotive domain,” in IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2021),
March 2021. [Online]. Available: http://www.es.mdu.se/publications/
6151-

[12] K. Charmaz and L. L. Belgrave, “Grounded theory,” The Blackwell
encyclopedia of sociology, 2007.

[13] H.-M. Chen, R. Kazman, and A. Garg, “Bitam: an engineering-
principled method for managing misalignments between business and
it architectures,” Sci. Comput. Program., vol. 57, no. 1, p. 5–26, jul
2005. [Online]. Available: https://doi.org/10.1016/j.scico.2004.10.002

[14] P. Clements and L. Bass, “Business goals as architectural knowledge,”
in Proceedings of the 2010 ICSE Workshop on Sharing and Reusing
Architectural Knowledge, ser. SHARK ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 9–12. [Online].
Available: https://doi.org/10.1145/1833335.1833337

[15] P. C. Clements and L. J. Bass, “Relating business goals to architecturally
significant requirements for software systems,” 2010. [Online].
Available: https://api.semanticscholar.org/CorpusID:110270852

[16] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in Procs of ESEM, 2011.

[17] L. de Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1,
pp. 132–151, 2012, dynamic Analysis and Testing of Embedded
Software. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121211002044

[18] U. Eliasson, R. Heldal, P. Pelliccione, and J. Lantz, “Architecting in the
automotive domain: Descriptive vs prescriptive architecture,” in 2015
12th Working IEEE/IFIP Conference on Software Architecture, 2015,
pp. 115–118.

[19] R. Farenhorst, R. Izaks, P. Lago, and H. van Vliet, “A just-in-time
architectural knowledge sharing portal,” in Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008). IEEE, 2008, pp.
125–134.



[20] M. Feilkas, D. Ratiu, and E. Jurgens, “The loss of architectural knowl-
edge during system evolution: An industrial case study,” in 2009 IEEE
17th International Conference on Program Comprehension, 2009, pp.
188–197.

[21] M. Fowler, “Design - who needs an architect?” IEEE Software, vol. 20,
no. 5, pp. 11–13, 2003.

[22] R. Franzosi, Quantitative narrative analysis. Sage, 2010, no. 162.
[23] A. Ganne, “Applying azure to automate dev ops for small ml smart sen-

sors,” International Research Journal of Modernization in Engineering
Technology, vol. 4, no. 12, 2022.

[24] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp. 101–
121, 2019.

[25] T. Greenhalgh and R. Peacock, “Effectiveness and efficiency of search
methods in systematic reviews of complex evidence: audit of primary
sources,” BMJ, vol. 331, no. 7524, pp. 1064–1065, 2005.

[26] R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag, and
J. Whittle, “Descriptive vs prescriptive models in industry,” in
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MODELS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
216–226. [Online]. Available: https://doi.org/10.1145/2976767.2976808

[27] I. ISO, “Ieee: 42010: 2011 systems and software engineering, architec-
ture description,” International Standard, 2011.

[28] I. Jacobson, “Use cases–yesterday, today, and tomorrow,” Software &
systems modeling, vol. 3, pp. 210–220, 2004.

[29] R. Kazman, M. Klein, and P. Clements, ATAM: Method for architecture
evaluation. Carnegie Mellon University, Software Engineering Institute
Pittsburgh, PA, 2000.

[30] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
software technology, 2013.

[31] P. Kruchten, “What do software architects really do?” Journal of
Systems and Software, vol. 81, no. 12, pp. 2413–2416, 2008, best papers
from the 2007 Australian Software Engineering Conference (ASWEC
2007), Melbourne, Australia, April 10-13, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121208002057

[32] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Softw., vol. 29, no. 6, p. 18–21,
Nov. 2012. [Online]. Available: https://doi.org/10.1109/MS.2012.167

[33] M. V. Krunic, “Documentation as code in automotive system/software
engineering,” Elektronika ir Elektrotechnika, vol. 29, no. 4, pp. 61–75,
2023.

[34] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA), 2018, pp.
176–17 609.

[35] J. Madison, “Agile architecture interactions,” IEEE software, vol. 27,
no. 2, pp. 41–48, 2010.

[36] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What in-
dustry needs from architectural languages: A survey,” IEEE Transactions
on Software Engineering, vol. 39, no. 6, pp. 869–891, 2013.

[37] S. S. Pandi, P. Kumar, and R. Suchindhar, “Integrating jenkins for
efficient deployment and orchestration across multi-cloud environments,”
in 2023 International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES). IEEE, 2023,
pp. 1–6.

[38] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, p. 40–52,
Oct. 1992. [Online]. Available: https://doi.org/10.1145/141874.141884

[39] A. F. Pinto, R. Terra, E. Guerra, and F. São Sabbas, “Introducing an
architectural conformance process in continuous integration.” J. Univers.
Comput. Sci., vol. 23, no. 8, pp. 769–805, 2017.

[40] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A systematic
mapping study of infrastructure as code research,” Information and
Software Technology, vol. 108, pp. 65–77, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584918302507

[41] ——, “A systematic mapping study of infrastructure as code research,”
Information and Software Technology, vol. 108, pp. 65–77, 2019.

[42] M. Rodgers, A. Sowden, M. Petticrew, L. Arai, H. Roberts, N. Britten,
and J. Popay, “Testing methodological guidance on the conduct of
narrative synthesis in systematic reviews: effectiveness of interventions

to promote smoke alarm ownership and function,” Evaluation, vol. 15,
no. 1, pp. 49–73, 2009.

[43] M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE Software, vol. 23, no. 2, pp. 31–39, 2006.

[44] S. Silva, A. Tuyishime, T. Santilli, P. Pelliccione, and L. Iovino, “Quality
metrics in software architecture,” in 2023 IEEE 20th International
Conference on Software Architecture (ICSA), 2023, pp. 58–69.

[45] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009. [Online]. Available:
https://books.google.it/books?id=j9pdGQAACAAJ

[46] N. K. Turhan and H. Oğuztüzün, “Metamodeling of reference software
architecture and automatic code generation,” in Proccedings of the 10th
European Conference on Software Architecture Workshops, 2016, pp.
1–7.

[47] A. Vázquez-Ingelmo, A. Garcı́a-Holgado, and F. J. Garcı́a-Peñalvo, “C4
model in a software engineering subject to ease the comprehension of
uml and the software,” in 2020 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 2020, pp. 919–924.

[48] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Procs of EASE. ACM,
2014, pp. 38:1–38:10.

[49] R. Wohlrab, U. Eliasson, P. Pelliccione, and R. Heldal, “Improving
the consistency and usefulness of architecture descriptions: Guidelines
for architects,” in 2019 IEEE International Conference on Software
Architecture (ICSA), 2019, pp. 151–160.

[50] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proceedings of the 38th international
conference on software engineering, 2016, pp. 488–498.

[51] S. M. Ågren, E. Knauss, R. Heldal, P. Pelliccione, A. Alminger,
M. Antonsson, T. Karlkvist, and A. Lindeborg, “Architecture
evaluation in continuous development,” Journal of Systems and
Software, vol. 184, p. 111111, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0164121221002089


